3.6.12 \(\int \frac {\cos ^4(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx\) [512]

3.6.12.1 Optimal result
3.6.12.2 Mathematica [A] (verified)
3.6.12.3 Rubi [A] (verified)
3.6.12.4 Maple [B] (verified)
3.6.12.5 Fricas [C] (verification not implemented)
3.6.12.6 Sympy [F]
3.6.12.7 Maxima [F]
3.6.12.8 Giac [F]
3.6.12.9 Mupad [F(-1)]

3.6.12.1 Optimal result

Integrand size = 23, antiderivative size = 247 \[ \int \frac {\cos ^4(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx=\frac {2 \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{7 b d}-\frac {32 a \left (a^2-2 b^2\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{35 b^4 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {8 \left (4 a^4-9 a^2 b^2+5 b^4\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{35 b^4 d \sqrt {a+b \sin (c+d x)}}-\frac {4 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (4 a^2-5 b^2-3 a b \sin (c+d x)\right )}{35 b^3 d} \]

output
2/7*cos(d*x+c)^3*(a+b*sin(d*x+c))^(1/2)/b/d-4/35*cos(d*x+c)*(4*a^2-5*b^2-3 
*a*b*sin(d*x+c))*(a+b*sin(d*x+c))^(1/2)/b^3/d+32/35*a*(a^2-2*b^2)*(sin(1/2 
*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+ 
1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2))*(a+b*sin(d*x+c))^(1/2)/b^4/d/((a+ 
b*sin(d*x+c))/(a+b))^(1/2)-8/35*(4*a^4-9*a^2*b^2+5*b^4)*(sin(1/2*c+1/4*Pi+ 
1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2 
*d*x),2^(1/2)*(b/(a+b))^(1/2))*((a+b*sin(d*x+c))/(a+b))^(1/2)/b^4/d/(a+b*s 
in(d*x+c))^(1/2)
 
3.6.12.2 Mathematica [A] (verified)

Time = 0.73 (sec) , antiderivative size = 219, normalized size of antiderivative = 0.89 \[ \int \frac {\cos ^4(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx=\frac {64 a \left (a^3+a^2 b-2 a b^2-2 b^3\right ) E\left (\frac {1}{4} (-2 c+\pi -2 d x)|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}-16 \left (4 a^4-9 a^2 b^2+5 b^4\right ) \operatorname {EllipticF}\left (\frac {1}{4} (-2 c+\pi -2 d x),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}+b \cos (c+d x) \left (-32 a^3+62 a b^2-2 a b^2 \cos (2 (c+d x))+\left (-8 a^2 b+45 b^3\right ) \sin (c+d x)+5 b^3 \sin (3 (c+d x))\right )}{70 b^4 d \sqrt {a+b \sin (c+d x)}} \]

input
Integrate[Cos[c + d*x]^4/Sqrt[a + b*Sin[c + d*x]],x]
 
output
(64*a*(a^3 + a^2*b - 2*a*b^2 - 2*b^3)*EllipticE[(-2*c + Pi - 2*d*x)/4, (2* 
b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)] - 16*(4*a^4 - 9*a^2*b^2 + 5 
*b^4)*EllipticF[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + 
d*x])/(a + b)] + b*Cos[c + d*x]*(-32*a^3 + 62*a*b^2 - 2*a*b^2*Cos[2*(c + d 
*x)] + (-8*a^2*b + 45*b^3)*Sin[c + d*x] + 5*b^3*Sin[3*(c + d*x)]))/(70*b^4 
*d*Sqrt[a + b*Sin[c + d*x]])
 
3.6.12.3 Rubi [A] (verified)

Time = 1.19 (sec) , antiderivative size = 259, normalized size of antiderivative = 1.05, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.609, Rules used = {3042, 3174, 3042, 3344, 27, 3042, 3231, 3042, 3134, 3042, 3132, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^4(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x)^4}{\sqrt {a+b \sin (c+d x)}}dx\)

\(\Big \downarrow \) 3174

\(\displaystyle \frac {6 \int \frac {\cos ^2(c+d x) (b+a \sin (c+d x))}{\sqrt {a+b \sin (c+d x)}}dx}{7 b}+\frac {2 \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{7 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {6 \int \frac {\cos (c+d x)^2 (b+a \sin (c+d x))}{\sqrt {a+b \sin (c+d x)}}dx}{7 b}+\frac {2 \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{7 b d}\)

\(\Big \downarrow \) 3344

\(\displaystyle \frac {6 \left (\frac {4 \int -\frac {b \left (a^2-5 b^2\right )+4 a \left (a^2-2 b^2\right ) \sin (c+d x)}{2 \sqrt {a+b \sin (c+d x)}}dx}{15 b^2}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (4 a^2-3 a b \sin (c+d x)-5 b^2\right )}{15 b^2 d}\right )}{7 b}+\frac {2 \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{7 b d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {6 \left (-\frac {2 \int \frac {b \left (a^2-5 b^2\right )+4 a \left (a^2-2 b^2\right ) \sin (c+d x)}{\sqrt {a+b \sin (c+d x)}}dx}{15 b^2}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (4 a^2-3 a b \sin (c+d x)-5 b^2\right )}{15 b^2 d}\right )}{7 b}+\frac {2 \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{7 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {6 \left (-\frac {2 \int \frac {b \left (a^2-5 b^2\right )+4 a \left (a^2-2 b^2\right ) \sin (c+d x)}{\sqrt {a+b \sin (c+d x)}}dx}{15 b^2}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (4 a^2-3 a b \sin (c+d x)-5 b^2\right )}{15 b^2 d}\right )}{7 b}+\frac {2 \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{7 b d}\)

\(\Big \downarrow \) 3231

\(\displaystyle \frac {6 \left (-\frac {2 \left (\frac {4 a \left (a^2-2 b^2\right ) \int \sqrt {a+b \sin (c+d x)}dx}{b}-\frac {\left (4 a^4-9 a^2 b^2+5 b^4\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}}dx}{b}\right )}{15 b^2}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (4 a^2-3 a b \sin (c+d x)-5 b^2\right )}{15 b^2 d}\right )}{7 b}+\frac {2 \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{7 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {6 \left (-\frac {2 \left (\frac {4 a \left (a^2-2 b^2\right ) \int \sqrt {a+b \sin (c+d x)}dx}{b}-\frac {\left (4 a^4-9 a^2 b^2+5 b^4\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}}dx}{b}\right )}{15 b^2}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (4 a^2-3 a b \sin (c+d x)-5 b^2\right )}{15 b^2 d}\right )}{7 b}+\frac {2 \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{7 b d}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {6 \left (-\frac {2 \left (\frac {4 a \left (a^2-2 b^2\right ) \sqrt {a+b \sin (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}dx}{b \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {\left (4 a^4-9 a^2 b^2+5 b^4\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}}dx}{b}\right )}{15 b^2}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (4 a^2-3 a b \sin (c+d x)-5 b^2\right )}{15 b^2 d}\right )}{7 b}+\frac {2 \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{7 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {6 \left (-\frac {2 \left (\frac {4 a \left (a^2-2 b^2\right ) \sqrt {a+b \sin (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}dx}{b \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {\left (4 a^4-9 a^2 b^2+5 b^4\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}}dx}{b}\right )}{15 b^2}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (4 a^2-3 a b \sin (c+d x)-5 b^2\right )}{15 b^2 d}\right )}{7 b}+\frac {2 \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{7 b d}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {6 \left (-\frac {2 \left (\frac {8 a \left (a^2-2 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {\left (4 a^4-9 a^2 b^2+5 b^4\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}}dx}{b}\right )}{15 b^2}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (4 a^2-3 a b \sin (c+d x)-5 b^2\right )}{15 b^2 d}\right )}{7 b}+\frac {2 \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{7 b d}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {6 \left (-\frac {2 \left (\frac {8 a \left (a^2-2 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {\left (4 a^4-9 a^2 b^2+5 b^4\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}}dx}{b \sqrt {a+b \sin (c+d x)}}\right )}{15 b^2}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (4 a^2-3 a b \sin (c+d x)-5 b^2\right )}{15 b^2 d}\right )}{7 b}+\frac {2 \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{7 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {6 \left (-\frac {2 \left (\frac {8 a \left (a^2-2 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {\left (4 a^4-9 a^2 b^2+5 b^4\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}}dx}{b \sqrt {a+b \sin (c+d x)}}\right )}{15 b^2}-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (4 a^2-3 a b \sin (c+d x)-5 b^2\right )}{15 b^2 d}\right )}{7 b}+\frac {2 \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{7 b d}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {6 \left (-\frac {2 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (4 a^2-3 a b \sin (c+d x)-5 b^2\right )}{15 b^2 d}-\frac {2 \left (\frac {8 a \left (a^2-2 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {2 \left (4 a^4-9 a^2 b^2+5 b^4\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{b d \sqrt {a+b \sin (c+d x)}}\right )}{15 b^2}\right )}{7 b}+\frac {2 \cos ^3(c+d x) \sqrt {a+b \sin (c+d x)}}{7 b d}\)

input
Int[Cos[c + d*x]^4/Sqrt[a + b*Sin[c + d*x]],x]
 
output
(2*Cos[c + d*x]^3*Sqrt[a + b*Sin[c + d*x]])/(7*b*d) + (6*((-2*Cos[c + d*x] 
*Sqrt[a + b*Sin[c + d*x]]*(4*a^2 - 5*b^2 - 3*a*b*Sin[c + d*x]))/(15*b^2*d) 
 - (2*((8*a*(a^2 - 2*b^2)*EllipticE[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqr 
t[a + b*Sin[c + d*x]])/(b*d*Sqrt[(a + b*Sin[c + d*x])/(a + b)]) - (2*(4*a^ 
4 - 9*a^2*b^2 + 5*b^4)*EllipticF[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[( 
a + b*Sin[c + d*x])/(a + b)])/(b*d*Sqrt[a + b*Sin[c + d*x]])))/(15*b^2)))/ 
(7*b)
 

3.6.12.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3174
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[g*(g*Cos[e + f*x])^(p - 1)*((a + b*Sin[e + f*x 
])^(m + 1)/(b*f*(m + p))), x] + Simp[g^2*((p - 1)/(b*(m + p)))   Int[(g*Cos 
[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*(b + a*Sin[e + f*x]), x], x] /; F 
reeQ[{a, b, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && GtQ[p, 1] && NeQ[m + p, 
 0] && IntegersQ[2*m, 2*p]
 

rule 3231
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[(b*c - a*d)/b   Int[1/Sqrt[a + b*Sin[e + f*x 
]], x], x] + Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b 
, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 3344
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[g*(g* 
Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*((b*c*(m + p + 1) - a*d* 
p + b*d*(m + p)*Sin[e + f*x])/(b^2*f*(m + p)*(m + p + 1))), x] + Simp[g^2*( 
(p - 1)/(b^2*(m + p)*(m + p + 1)))   Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Si 
n[e + f*x])^m*Simp[b*(a*d*m + b*c*(m + p + 1)) + (a*b*c*(m + p + 1) - d*(a^ 
2*p - b^2*(m + p)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m}, x] && NeQ[a^2 - b^2, 0] && GtQ[p, 1] && NeQ[m + p, 0] && NeQ[m + p + 1 
, 0] && IntegerQ[2*m]
 
3.6.12.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(941\) vs. \(2(293)=586\).

Time = 1.47 (sec) , antiderivative size = 942, normalized size of antiderivative = 3.81

method result size
default \(-\frac {2 \left (-5 b^{5} \left (\sin ^{5}\left (d x +c \right )\right )+16 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, F\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{4} b -12 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, F\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{3} b^{2}-36 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, F\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{2} b^{3}+12 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, F\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a \,b^{4}+20 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, F\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) b^{5}-16 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, E\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{5}+48 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, E\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{3} b^{2}-32 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, E\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a \,b^{4}+a \,b^{4} \left (\sin ^{4}\left (d x +c \right )\right )-2 a^{2} b^{3} \left (\sin ^{3}\left (d x +c \right )\right )+20 b^{5} \left (\sin ^{3}\left (d x +c \right )\right )-8 a^{3} b^{2} \left (\sin ^{2}\left (d x +c \right )\right )+14 a \,b^{4} \left (\sin ^{2}\left (d x +c \right )\right )+2 \sin \left (d x +c \right ) a^{2} b^{3}-15 \sin \left (d x +c \right ) b^{5}+8 a^{3} b^{2}-15 a \,b^{4}\right )}{35 b^{5} \cos \left (d x +c \right ) \sqrt {a +b \sin \left (d x +c \right )}\, d}\) \(942\)

input
int(cos(d*x+c)^4/(a+b*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
-2/35*(-5*b^5*sin(d*x+c)^5+16*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c) 
-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x 
+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^4*b-12*((a+b*sin(d*x+c))/(a-b))^( 
1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*Ellip 
ticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^3*b^2-36*((a+b* 
sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))* 
b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2 
))*a^2*b^3+12*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/ 
2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2 
),((a-b)/(a+b))^(1/2))*a*b^4+20*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+ 
c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d 
*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*b^5-16*((a+b*sin(d*x+c))/(a-b))^( 
1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*Ellip 
ticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^5+48*((a+b*sin( 
d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a 
-b))^(1/2)*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a 
^3*b^2-32*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*( 
-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),(( 
a-b)/(a+b))^(1/2))*a*b^4+a*b^4*sin(d*x+c)^4-2*a^2*b^3*sin(d*x+c)^3+20*b^5* 
sin(d*x+c)^3-8*a^3*b^2*sin(d*x+c)^2+14*a*b^4*sin(d*x+c)^2+2*sin(d*x+c)*...
 
3.6.12.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 493, normalized size of antiderivative = 2.00 \[ \int \frac {\cos ^4(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx=\frac {2 \, {\left (2 \, \sqrt {2} {\left (8 \, a^{4} - 19 \, a^{2} b^{2} + 15 \, b^{4}\right )} \sqrt {i \, b} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right ) + 2 \, \sqrt {2} {\left (8 \, a^{4} - 19 \, a^{2} b^{2} + 15 \, b^{4}\right )} \sqrt {-i \, b} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right ) - 24 \, \sqrt {2} {\left (-i \, a^{3} b + 2 i \, a b^{3}\right )} \sqrt {i \, b} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right )\right ) - 24 \, \sqrt {2} {\left (i \, a^{3} b - 2 i \, a b^{3}\right )} \sqrt {-i \, b} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right )\right ) + 3 \, {\left (5 \, b^{4} \cos \left (d x + c\right )^{3} + 6 \, a b^{3} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 2 \, {\left (4 \, a^{2} b^{2} - 5 \, b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt {b \sin \left (d x + c\right ) + a}\right )}}{105 \, b^{5} d} \]

input
integrate(cos(d*x+c)^4/(a+b*sin(d*x+c))^(1/2),x, algorithm="fricas")
 
output
2/105*(2*sqrt(2)*(8*a^4 - 19*a^2*b^2 + 15*b^4)*sqrt(I*b)*weierstrassPInver 
se(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, 1/3*(3*b*cos 
(d*x + c) - 3*I*b*sin(d*x + c) - 2*I*a)/b) + 2*sqrt(2)*(8*a^4 - 19*a^2*b^2 
 + 15*b^4)*sqrt(-I*b)*weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27* 
(-8*I*a^3 + 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2 
*I*a)/b) - 24*sqrt(2)*(-I*a^3*b + 2*I*a*b^3)*sqrt(I*b)*weierstrassZeta(-4/ 
3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, weierstrassPInvers 
e(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, 1/3*(3*b*cos( 
d*x + c) - 3*I*b*sin(d*x + c) - 2*I*a)/b)) - 24*sqrt(2)*(I*a^3*b - 2*I*a*b 
^3)*sqrt(-I*b)*weierstrassZeta(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 
 9*I*a*b^2)/b^3, weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I 
*a^3 + 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*I*a) 
/b)) + 3*(5*b^4*cos(d*x + c)^3 + 6*a*b^3*cos(d*x + c)*sin(d*x + c) - 2*(4* 
a^2*b^2 - 5*b^4)*cos(d*x + c))*sqrt(b*sin(d*x + c) + a))/(b^5*d)
 
3.6.12.6 Sympy [F]

\[ \int \frac {\cos ^4(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx=\int \frac {\cos ^{4}{\left (c + d x \right )}}{\sqrt {a + b \sin {\left (c + d x \right )}}}\, dx \]

input
integrate(cos(d*x+c)**4/(a+b*sin(d*x+c))**(1/2),x)
 
output
Integral(cos(c + d*x)**4/sqrt(a + b*sin(c + d*x)), x)
 
3.6.12.7 Maxima [F]

\[ \int \frac {\cos ^4(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )^{4}}{\sqrt {b \sin \left (d x + c\right ) + a}} \,d x } \]

input
integrate(cos(d*x+c)^4/(a+b*sin(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(cos(d*x + c)^4/sqrt(b*sin(d*x + c) + a), x)
 
3.6.12.8 Giac [F]

\[ \int \frac {\cos ^4(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )^{4}}{\sqrt {b \sin \left (d x + c\right ) + a}} \,d x } \]

input
integrate(cos(d*x+c)^4/(a+b*sin(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(cos(d*x + c)^4/sqrt(b*sin(d*x + c) + a), x)
 
3.6.12.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^4}{\sqrt {a+b\,\sin \left (c+d\,x\right )}} \,d x \]

input
int(cos(c + d*x)^4/(a + b*sin(c + d*x))^(1/2),x)
 
output
int(cos(c + d*x)^4/(a + b*sin(c + d*x))^(1/2), x)